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Abstract

Retinex model is an effective tool for low-light image enhancement. It assumes that
observed images can be decomposed into the reflectance and illumination. Most existing
Retinex-based methods have carefully designed hand-crafted constraints and parameters
for this highly ill-posed decomposition, which may be limited by model capacity when
applied in various scenes. In this paper, we collect a LOw-Light dataset (LOL) contain-
ing low/normal-light image pairs and propose a deep Retinex-Net learned on this dataset,
including a Decom-Net for decomposition and an Enhance-Net for illumination adjust-
ment. In the training process for Decom-Net, there is no ground truth of decomposed
reflectance and illumination. The network is learned with only key constraints including
the consistent reflectance shared by paired low/normal-light images, and the smoothness
of illumination. Based on the decomposition, subsequent lightness enhancement is con-
ducted on illumination by an enhancement network called Enhance-Net, and for joint
denoising there is a denoising operation on reflectance. The Retinex-Net is end-to-end
trainable, so that the learned decomposition is by nature good for lightness adjustment.
Extensive experiments demonstrate that our method not only achieves visually pleas-
ing quality for low-light enhancement but also provides a good representation of image
decomposition.

1 Introduction
Insufficient lighting in image capturing can significantly degrade the visibility of images.
The lost details and low contrast not only cause unpleasant subjective feelings, but also hurt
the performance of many computer vision systems which are designed for normal-light im-
ages. There are a lot of causes for insufficient lighting, such as low-light environment, limited
performance of photography equipment, and inappropriate configurations for the equipment.
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To make the buried details visible, improve the subjective experience and usability of current
computer vision systems, low-light image enhancement is demanded.

In the past decades, many researchers have devoted their attention to solving the prob-
lem of low-light image enhancement. Many techniques have been developed to improve
the subjective and objective quality of low-light images. Histogram equalization (HE) [20]
and its variants restrain the histograms of the output images to meet some constraints. De-
hazing based method [5] utilizes the inverse connection between the images with insufficient
illumination and those in hazy environments.

Another category of low-light enhancement methods is built on Retinex theory [12],
which assumes the observed color image can be decomposed into reflectance and illumi-
nation. Single-scale Retinex (SSR) [11] constrains the illumination map to be smooth by
Gaussian filter as the early attempt. Multi-scale Retinex (MSRCR) [10] extends SSR with
multi-scale Gaussian filters and color restoration. [23] proposes a method to preserve nat-
uralness of illumination with lightness-order-error measure. Fu et al. [7] proposed to fuse
multiple derivations of the initially illumination map. SRIE [7] estimates reflectance and
illumination simultaneously using a weighted variational model. After manipulating the il-
lumination, the target result can be restored. LIME [9], on the other hand, only estimates
illumination with structure prior and uses reflection as the final enhanced results. There are
also Retinex-based methods for joint low-light enhancement and noise removal [14, 15].

Although these methods may produce promising results in some cases, they still suffer
from the limitation in model capacity of the decomposition for reflectance and illumination.
It is difficult to design well-working constraints for image decomposition that can be applied
in various scenes. Besides, the manipulations on illumination map are also hand-crafted and
the performance of these methods usually relies on careful parameter tuning.

With the rapid development of deep neural network, CNN has been widely used in low-
level image processing, including super-resolution [6, 24, 26, 27], rain removal [16, 21, 25]
et al. Lore et al. [17] uses stacked sparse denoising auto-encoder for simultaneous low-light
enhancement and noise reduction (LLNet), however the nature of low-light pictures is not
taken into account.

To overcome these difficulties, we propose a data-driven Retinex decomposition method.
A deep network, called as Retinex-Net, that integrates image decomposition and the succes-
sive enhancement operations is built. First, a subnetwork, Decom-Net is used to split the
observed image into lighting-independent reflectance and structure-aware smooth illumina-
tion. The Decom-Net is learned with two constraints. First, low/normal-light images share
the same reflectance. Second, the illumination map should be smooth but retain main struc-
tures, which is obtained by a structure-aware total variation loss. Then, another Enhance-Net
adjusts the illumination map to maintain consistency at large regions while tailor local dis-
tributions by multi-scale concatenation. Since noise is often louder in dark regions and even
amplified by the enhancement process, denoising on reflectance is introduced. For training
such a network, we build a dataset of low/normal-light image pairs from real photogra-
phy and synthetic images from RAW datasets. Extensive experiments demonstrate that our
method not only achieves pleasing visual quality in low-light enhancement but also provides
a good representation of image decomposition. The contributions of our work are summa-
rized as follows:

• We build a large scale dataset with paired low/normal-light images captured in real
scenes. As far as we know, it is the first attempt in the low-light enhancement field.

• We construct a deep-learning image decomposition based on Retinex model. The de-
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Figure 1: The proposed framework for Retinex-Net. The enhancement process is divided
into three steps: decomposition, adjustment and reconstruction. In the decomposition step,
a subnetwork Decom-Net decomposes the input image into reflectance and illumination. In
the following adjustment step, an encoder-decoder based Enhance-Net brightens up the illu-
mination. Multi-scale concatenation is introduced to adjust the illumination from multi-scale
perspectives. Noise on the reflectance is also removed at this step. Finally, we reconstruct
the adjusted illumination and reflectance to get the enhanced result.

composition network is end-to-end trained with the successive low-light enhancement
network, thus the framework is by nature good at light condition adjustment.

• We propose a structure-aware total variation constraint for deep image decomposition.
By mitigating the effect of total variation at the places where gradients are strong, the
constraint successfully smooths the illumination map and retains the main structures.

2 Retinex-Net for Low-Light Enhancement
The classic Retinex theory models the human color perception. It assumes that the observed
images can be decomposed into two components, reflectance and illumination. Let S repre-
sent the source image, then it can be denoted by

S = R◦ I, (1)

where R represents reflectance, I represents illumination and ◦ represents element-wise mul-
tiplication. Reflectance describes the intrinsic property of captured objects, which is consid-
ered to be consistent under any lightness conditions. The illumination represents the various
lightness on objects. On low-light images, it usually suffers from darkness and unbalanced
illumination distributions.

Motivated by Retinex theory, we design a deep Retinex-Net to perform the reflectance
/illumination decomposition and low-light enhancement jointly. The network consists of
three steps: decomposition, adjustment, and reconstruction. At the decomposition step,
Retinex-Net decomposes the input image into R and I by a Decom-Net. It takes in pairs
of low/normal-light images at the training stage, while only low-light images as input at
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the testing stage. With the constraints that the low/normal-light images share the same re-
flectance and the smoothness of illumination, Decom-Net learns to extract the consistent
R between variously illuminated images in a data-driven way. At the adjustment step, an
Enhance-Net is used to brighten up the illumination map. The Enhance-Net takes an overall
framework of encoder-decoder. A multi-scale concatenation is used to maintain the global
consistency of illumination with context information in large regions while tuning the local
distributions with focused attention. Furthermore, the amplified noise, which often occurs in
low-light conditions, is removed from reflectance if needed. Then, we combine the adjusted
illumination and reflectance by element-wise multiplication at the reconstruction stage.

2.1 Data-Driven Image Decomposition
One way to decompose the observed image is estimating reflectance and illumination directly
on the low-light input image with elaborately hand-crafted constraints. Since Eq.(1) is highly
ill-posed, it is not easy to design a proper constraint function adaptive to various scenes.
Therefore, we try to address this problem in a data-driven way.

During the training stage, Decom-Net takes in paired low/normal-light images each time
and learns the decomposition for both low-light and its corresponding normal-light image un-
der the guidance that the low-light image and normal-light image share the same reflectance.
Note that although the decomposition is trained with paired data, it can decompose the low-
light input individually in the testing phase. During training, there is no need to provide
the ground truth of the reflectance and illumination. Only requisite knowledge including
the consistency of reflectance and the smoothness of illumination map is embedded into the
network as loss functions. Thus, the decomposition of our network is automatically learned
from paired low/normal-light images, and by nature suitable for depicting the light variation
among the images under different light conditions.

One thing to note is that although this problem may be similar to intrinsic image de-
composition in form, they are different essentially. In our task, we do not need to obtain
the actual intrinsic image accurately, but a good representation for light adjustment. Thus,
we let the network learn to find the consistent component between low-light image and its
corresponding enhanced result.

As illustrated in Fig. 1, Decom-Net takes the low-light image Slow and the normal-light
one Snormal as input, then estimates the reflectance Rlow and the illumination Ilow for Slow,
as well as Rnormal and Inormal for Snormal , respectively. It first uses a 3× 3 convolutional
layer to extract features from the input image. Then, several 3×3 convolutional layers with
Rectified Linear Unit (ReLU) as the activation function are followed to map the RGB image
into reflectance and illumination. A 3×3 convolutional layer projects R and I from feature
space, and sigmoid function is used to constrain both R and I in the range of [0, 1].

The loss L consists of three terms: reconstruction loss Lrecon, invariable reflectance loss
Lir, and illumination smoothness loss Lis:

L= Lrecon +λirLir +λisLis, (2)

where λir and λis denote the coefficients to balance the consistency of reflectance and the
smoothness of illumination.

Based on the assumption that both Rlow and Rhigh can reconstruct the image with the
corresponding illumination map, the reconstruction loss Lrecon is formulated as:

Lrecon = ∑
i=low,normal

∑
j=low,normal

λi j||Ri ◦ I j−S j||1. (3)
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(a) Input (b) Reflectance (c) Illumination

(d) (f)(e) (g) (h)

Figure 2: Illustration for effectiveness of our reflectance gradient-weighted TV loss for il-
lumination smoothness. The first row displays the input image (a), reflectance (b) and illu-
mination (c) with weighted TV loss from left to right. The second row displays a zoom-in
region where (d) is for input image, (e) and (f) are for R and I with weighted TV loss, (g)
and (h) are for R and I with original TV loss.

Invariable reflectance loss Lir is introduced to constrain the consistency of reflectance:

Lir = ||Rlow−Rnormal ||1. (4)

Illumination smoothness loss Lis is described in detail in the following section.

2.2 Structure-Aware Smoothness Loss
One basic assumption for illumination map is the local consistency and the structure- aware-
ness, as mentioned by [9]. In other words, a good solution for illumination map should be
smooth in textural details while can still preserve the overall structure boundary.

Total variation minimization (TV) [2], which minimizes the gradient of the whole image,
is often used as smoothness prior for various image restoration tasks. However, directly
using TV as loss function fails at regions where the image has strong structures or where
lightness changes drastically. It is due to the uniform reduction for gradient of illumination
map regardless of whether the region is of textual details or strong boundaries. In other
words, TV loss is structure-blindness. The illumination is blurred and strong black edges are
left on reflectance, as illustrated in Fig. 2.

To make the loss aware of the image structure, the original TV function is weighted with
the gradient of reflectance map. The final Lis is formulated as:

Lis = ∑
i=low,normal

||∇Ii ◦ exp(−λg∇Ri)||, (5)

where ∇ denotes the gradient including ∇h (horizontal) and ∇v (vertical), and λg denotes
the coefficient balancing the strength of structure-awareness. With the weight exp(−λg∇Ri),
Lis loosens the constraint for smoothness where the gradient of reflectance is steep, in other
words, where image structures locate and where the illumination should be discontinuous.
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Although LIME [9] also considers to keep image structures in illumination map with
weighted TV constraint, we argue that the two methods are different. For LIME, the total
variation constraint is weighted by an initial illumination map, which is the maximum inten-
sity of each pixel in R, G and B channels. Our structure-aware smoothness loss instead is
weighted by reflectance. The static initial estimation used in LIME may not depict the image
structure as well as reflectance does, since reflectance is assumed as the physical property of
an image. Since our Decom-Net is trained off-line with large-scale of data, the illumination
and weight (the reflectance) can be updated simultaneously in training phase.

2.3 Multi-Scale Illumination Adjustment
The illumination enhancement network takes an overall framework of an encoder-decoder
architecture. To adjust the illumination from hierarchical perspectives, we introduce a multi-
scale concatenation, as shown in Fig. 1.

An encoder-decoder architecture obtains context information in large regions. The in-
put image is successively down-sampled to a small scale, at which the network can have a
perspective of the large-scale illumination distribution. This brings network the ability of
adaptive adjustment. With large-scale illumination information, up-sampling blocks recon-
struct local illumination distribution. Skip connections are introduced from a down-sampling
block to its corresponding mirrored up-sampling block by element-wise summation, which
enforces the network to learn residuals.

To adjust the illumination hierarchically, which means to maintain the consistency of
global illumination while tailor the diverse local illumination distribution, a multi-scale con-
catenation is introduced. If there are M progressively up-sampling blocks, each of which
extracts a C channel feature map, we resize these features at different scales by nearest-
neighbor interpolation to the final scale and concatenate them to a C×M channel feature
map. Then, by a 1×1 convolutional layer, the concatenated features are reduced to C chan-
nels. A 3×3 convolutional layer is followed to reconstruct the illumination map Ĩ.

A down-sampling block consists of a convolutional layer with stride 2 and a ReLU. In the
up-sampling block, a resize-convolutional layer is used. As demonstrated in [19], it can avoid
checkerboard pattern of artifacts. Resize-convolutional layer consists of a nearest-neighbor
interpolation operation, a convolutional layer with stride 1, and a ReLU.

The loss function L for Enhance-Net consists of the reconstruction loss Lrecon and the
illumination smoothness loss Lis. Lrecon means to produce a normal-light Ŝ, which is

Lrecon = ||Rlow ◦ Î−Snormal ||1. (6)

Lis is the same as Eq.(5) except that Î is weighted by gradient map of Rlow.

2.4 Denoising on Reflectance
In the decomposition step, several constraints are imposed to the network, one of which is
the structure-aware smoothness of illumination map. When the estimated illumination map
is smooth, details are all retained on the reflectance, including boosted noise. Therefore, we
can operate denoising method on reflectance before reconstructing the output image with
illumination map. Given that noise in dark regions is amplified according to the lightness
intensity during the decomposition, we should use illumination-related denoising method.
Our implementation is described in Sec. 4.
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Figure 3: Several examples for low/normal-light image pairs in LOL dataset. Objects and
scenes captured in this dataset are diverse.

3 Dataset
Although the low-light enhancement problem has been studied for decades, to the best of our
knowledge, current publicly available datasets provide no paired low/normal-light images
captured in real scenes. Several low-light enhancement works use datasets of High Dynamic
Range (HDR) as an alternative, such as MEF dataset [18]. However, these datasets are in
small scale and contain limited scenes. Thus, they cannot be used to train a deep network.
To make it tractable to learn a low-light enhancement network from a large-scale dataset, we
construct a new one consisting of two categories: real photography pairs and synthetic pairs
from raw images. The first one captures the degradation features and properties in real cases.
The second plays a role in data augmentation, diversifying scenes and objects.

3.1 Dataset Captured in Real Scenes
Our dataset, named LOw Light paired dataset (LOL), contains 500 low/normal-light image
pairs. To the best of our knowledge, LOL is the first dataset containing image pairs taken
from real scenes for low-light enhancement.

Most low-light images are collected by changing exposure time and ISO, while other
configurations of the cameras are fixed. We capture images from a variety of scenes, e.g.,
houses, campuses, clubs, streets. Fig. 3 shows a subset of the scenes.

Since camera shaking, object movement, and lightness changing may cause misalign-
ment between the image pairs, inspired by [1], a three-step method is used to eliminate such
misalignments between the image pairs in our dataset. The implementation details can be
found in the supplementary file. These raw images are resized to 400×600 and converted to
Portable Network Graphics format. The dataset will be available publicly.

3.2 Synthetic Image Pairs from Raw Images
To make synthetic images match the property of real dark photography, we analyze the il-
lumination distribution of low-light images. We collect 270 low-light images from public
MEF [18], NPE [23], LIME [9], DICM [13], VV 1, and Fusion [3] dataset, transform the
images into YCbCr channel and calculate the histogram of Y channel. We also collect 1000
raw images from RAISE [4] as normal-light images and calculate the histogram of Y channel
in YCbCr. Fig. 4 shows the result.

1https://sites.google.com/site/vonikakis/datasets
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Figure 4: Fitting results based on the histogram of Y channel in YCbCr. For clarity, the
histogram in depicted in the form of curve graphs and the vertical axis is scaled in logarithmic
domain. The horizontal axis represents the pixel value, noticing that Y channel ranges from
16 to 240.
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Figure 5: The decomposition results using our Decom-Net and LIME on Bookshelf in LOL
dataset. In our results, the reflectance of the low-light image resembles the reflectance of the
normal-light image except for the amplified noise in dark regions occurred in real scenes.

Raw images contain more information than the converted results. When operating on raw
images, all calculations used to generate pixel values are performed in one step on the base
data, making the result more accurate. 1000 raw images in RAISE [4] are used to synthesize
low-light images. Interface provided by Adobe Lightroom is used and we try different kinds
of parameters to make the histogram of Y channel fit the result in low-light images. Final
parameter configuration can be found in the supplementary material. As shown in Fig. 4, the
illumination distribution of synthetic images matches that of low-light images. Finally we
resize these raw images to 400×600 and convert them to Portable Network Graphics format.

4 Experiments

4.1 Implementation Details

Our LOL dataset mentioned in Sec. 3 with 500 image pairs is divided into 485 pairs for
training and another 15 ones for evaluation. So the net-work is trained on 485 real-case
image pairs as well as 1000 synthetic ones. The whole network is light-weighted since we
empirically find it already enough for our purpose. The Decom-Net takes 5 convolutional
layers with a ReLU activation between 2 conv-layers without ReLU. The Enhance-Net con-
sists of 3 down-sampling blocks and 3 up-sampling ones. We first train the Decom-Net and
the Enhance-Net, then fine-tune the network end-to-end using stochastic gradient descent

Citation
Citation
{Dang-Nguyen, Pasquini, Conotter, and Boato} 2015



WEI, WANG, YANG, LIU: DEEP RETINEX DECOMPOSITION 9

(b) SRIE (c)_NPE(a) Input (d) LIME (e) DeHz (f) Retinex-Net

Figure 6: The results using different methods on natural images: (top-to-bottom) Street from
LIME dataset, Still lives from LIME dataset, and Room from MEF dataset.

(SGD) with back-propagation. Batch size is set to be 16 and patch-size to be 96× 96. λir,
λis and λg are set to 0.001, 0.1 and 10 respectively. When i 6= j, λi j is set to 0.001, and when
i = j, λi j is set to 1.

4.2 Decomposition Results
In Fig. 5 we illustrate a low/normal-light image pairs in the evaluation set of our LOL dataset,
as well as the reflectance and illumination map decomposed by Decom-Net and LIME. More
examples are provided in the supplementary file. It is shown that our Decom-Net can extract
underlying consistent reflectance from a pair of images under quite different light conditions
in both textual and smooth regions. The reflectance of the low-light image resembles the
reflectance of the normal-light image except for the amplified noise in dark regions occurred
in real scenes. The illumination maps, on the other hand, portray the lightness and shadow
on the image. Compared with our result, LIME has much illumination information left on
the reflectance (see the shadow on the shelf).

4.3 Evaluation
We evaluate our approach on real-scene images from public LIME [9], MEF [18], and
DICM [13] dataset. LIME contains 10 testing images. MEF contains 17 image sequences
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(a) LIME (c) Retinex-Net(b) JED

Figure 7: The joint denoising results using different methods on Wardrobe in LOL Dataset.

with multiple exposure levels. DICM collected 69 images with commercial digital cameras.
We compare our Retinex-Net with four state-of-the-art methods, including de-hazing based
method (DeHz) [5], naturalness preserved enhancement algorithm (NPE) [23], simultaneous
reflectance and illumination estimation algorithm (SRIE) [8], and illumination map estima-
tion based (LIME) [9].

Fig. 6 shows visual comparison on three natural images. More results can be found in the
supplementary file. As shown in every red rectangle, our method brightens up the objects
buried in dark lightness enough without overexposure, which benefits from the learning-
based image decomposition method and the multi-scale tailored illumination map. Com-
pared with LIME, our results are not partially over-exposed (see the leaves in Still lives and
the outside leaves in Room). The objects have no dark edges, compared with DeHz, which
benefits from the weighted TV loss term (see edges on the houses in Street).

4.4 Joint Low-Light Enhancement and Denoising

Considering the comprehensive performance, BM3D [3] is used as the denoising operation
in Retinex-Net. As noise is unevenly amplified on reflectance, we use a illumination relative
strategy (see supplementary material). We compare our joint-denoising Retinex-Net with
two methods, one is LIME with denoising post-processing, the other is JED [22], a recent
joint low-light enhancement and denoising method. As shown in Fig. 7, details are better
preserved by Retinex-Net while LIME and JED blur the edges.

5 Conclusion

In this paper, a deep Retinex decomposition method is proposed, which can learn to decom-
pose the observed image into reflectance and illumination in a data-driven way without the
ground truth of decomposed reflectance and illumination. Subsequent light enhancement
on illumination and denoising operations on reflectance are introduced. The decomposition
network and low-light enhancement network are trained end-to-end. Experimental results
show that our method produces visually pleasing enhancement results as well as a good
representation of image decomposition.
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reduction ąî. Journal of Visual Communication & Image Representation, 51:144–154,
2017.

Citation
Citation
{Dong, Wang, Pang, Li, Wen, Meng, and Lu} 2011

Citation
Citation
{Wang, Zheng, Hu, and Li} 2013

Citation
Citation
{Fu, Zeng, Huang, Zhang, and Ding} 2016{}

Citation
Citation
{Guo, Li, and Ling} 2017

Citation
Citation
{Dabov, Foi, and Egiazarian} 2006

Citation
Citation
{Ren, Li, Cheng, and Liu} 2018



WEI, WANG, YANG, LIU: DEEP RETINEX DECOMPOSITION 11

[2] Stanley H. Chan, Ramsin Khoshabeh, Kristofor B. Gibson, Philip E. Gill, and
Truong Q. Nguyen. An augmented lagrangian method for total variation video restora-
tion. IEEE Trans Image Process, 20(11):3097–3111, 2011.

[3] Kostadin Dabov, Alessandro Foi, and Karen Egiazarian. Image denoising with block-
matching and 3d filtering. Proceedings of SPIE - The International Society for Optical
Engineering, 6064:354–365, 2006.

[4] Duc Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter, and Giulia Boato. Raise:
a raw images dataset for digital image forensics. In ACM Multimedia Systems Confer-
ence, pages 219–224, 2015.

[5] Xuan Dong, Guan Wang, Yi Pang, Weixin Li, Jiangtao Wen, Wei Meng, and Yao Lu.
Fast efficient algorithm for enhancement of low lighting video. In IEEE International
Conference on Multimedia and Expo, pages 1–6, 2011.

[6] Yuming Fang, Chi Zhang, Wenhan Yang, Jiaying Liu, and Zongming Guo. Blind vi-
sual quality assessment for image super-resolution by convolutional neural network.
Multimedia Tools and Applications, pages 1–18, 2018.

[7] Xueyang Fu, Delu Zeng, Yue Huang, Yinghao Liao, Xinghao Ding, and John Paisley.
A fusion-based enhancing method for weakly illuminated images. Signal Processing,
129(C):82–96, 2016.

[8] Xueyang Fu, Delu Zeng, Yue Huang, Xiao Ping Zhang, and Xinghao Ding. A weighted
variational model for simultaneous reflectance and illumination estimation. In Com-
puter Vision and Pattern Recognition, pages 2782–2790, 2016.

[9] Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement via illu-
mination map estimation. IEEE Transactions on Image Processing, 26(2):982–993,
2017.

[10] Daniel J. Jobson, Zia-ur. Rahman, and Glenn A. Woodell. A multiscale retinex for
bridging the gap between color images and the human observation of scenes. IEEE
Transactions on Image Processing, 6(7):965–76, 1997.

[11] Daniel J. Jobson, Zia-ur. Rahman, and Glenn A. Woodell. Properties and performance
of a center/surround retinex. IEEE Transactions on Image Processing, 6(3):451–462,
1997.

[12] Edwin. H. Land. The retinex theory of color vision. Scientific American, 237(6):108,
1977.

[13] Chulwoo Lee, Chul Lee, and Chang Su Kim. Contrast enhancement based on lay-
ered difference representation. In IEEE International Conference on Image Processing,
pages 965–968, 2013.

[14] Mading Li, Jiaying Liu, Wenhan Yang, and Zongming Guo. Joint denoising and en-
hancement for low-light images via retinex model. In International Forum on Digital
TV and Wireless Multimedia Communications, pages 91–99. Springer, 2017.



12 WEI, WANG, YANG, LIU: DEEP RETINEX DECOMPOSITION

[15] Mading Li, Jiaying Liu, Wenhan Yang, and Zongming Guo. Structure-revealing low-
light image enhancement via robust retinex model. IEEE Transactions on Image Pro-
cessing, 27(6):2828–2841, 2018.

[16] Jiaying Liu, Wenhan Yang, Shuai Yang, and Zongming Guo. Erase or fill? deep joint
recurrent rain removal and reconstruction in videos. In IEEE Conference on Computer
Vision and Pattern Recognition, June 2018.

[17] Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Llnet: A deep autoencoder
approach to natural low-light image enhancement. Pattern Recognition, 61:650–662,
2017.

[18] Keda. Ma, Kai. Zeng, and Zhou. Wang. Perceptual quality assessment for multi-
exposure image fusion. IEEE Transactions on Image Processing, 24(11):3345, 2015.

[19] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
checkerboard artifacts. Distill, 2016. URL http://distill.pub/2016/
deconv-checkerboard/.

[20] Stephen M. Pizer, E. Philip Amburn, John D. Austin, Robert Cromartie, Ari
Geselowitz, Trey Greer, Bart Ter Haar Romeny, John B. Zimmerman, and Karel
Zuiderveld. Adaptive histogram equalization and its variations. Computer Vision
Graphics & Image Processing, 39(3):355–368, 1987.

[21] Rui Qian, Robby T. Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative
adversarial network for raindrop removal from a single image. In IEEE Conference on
Computer Vision and Pattern Recognition, June 2018.

[22] Xutong Ren, Mading Li, Wen-Huang Cheng, and Jiaying Liu. Joint enhancement and
denoising method via sequential decomposition. In Circuits and Systems (ISCAS), 2018
IEEE International Symposium on, pages 1–5. IEEE, 2018.

[23] Shuhang Wang, Jin Zheng, Hai Miao Hu, and Bo Li. Naturalness preserved enhance-
ment algorithm for non-uniform illumination images. IEEE Transactions on Image
Processing, 22(9):3538–48, 2013.

[24] Wenhan Yang, Jiashi Feng, Jianchao Yang, Fang Zhao, Jiaying Liu, Zongming Guo,
and Shuicheng Yan. Deep edge guided recurrent residual learning for image super-
resolution. IEEE Transactions on Image Processing, 26(12):5895–5907, 2017.

[25] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng
Yan. Deep joint rain detection and removal from a single image. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1357–1366, 2017.

[26] Wenhan Yang, Jiashi Feng, Guosen Xie, Jiaying Liu, Zongming Guo, and Shuicheng
Yan. Video super-resolution based on spatial-temporal recurrent residual networks.
Computer Vision and Image Understanding, 168:79–92, 2018.

[27] Wenhan Yang, Sifeng Xia, Jiaying Liu, and Zongming Guo. Reference guided deep
super-resolution via manifold localized external compensation. IEEE Transactions on
Circuits and Systems for Video Technology, 2018.

http://distill.pub/2016/deconv-checkerboard/
http://distill.pub/2016/deconv-checkerboard/

